home *** CD-ROM | disk | FTP | other *** search
- //-----------------------------------------------------------------------------
- // File: D3DMath.cpp
- //
- // Desc: Shortcut macros and functions for using DX objects
- //
- // Copyright (c) 1997-1999 Microsoft Corporation. All rights reserved
- //-----------------------------------------------------------------------------
- #define D3D_OVERLOADS
- #define STRICT
- #include <math.h>
- #include <stdio.h>
- #include "D3DMath.h"
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_MatrixMultiply()
- // Desc: Does the matrix operation: [Q] = [A] * [B]. Note that the order of
- // this operation was changed from the previous version of the DXSDK.
- //-----------------------------------------------------------------------------
- VOID D3DMath_MatrixMultiply( D3DMATRIX& q, D3DMATRIX& a, D3DMATRIX& b )
- {
- FLOAT* pA = (FLOAT*)&a;
- FLOAT* pB = (FLOAT*)&b;
- FLOAT pM[16];
-
- ZeroMemory( pM, sizeof(D3DMATRIX) );
-
- for( WORD i=0; i<4; i++ )
- for( WORD j=0; j<4; j++ )
- for( WORD k=0; k<4; k++ )
- pM[4*i+j] += pA[4*i+k] * pB[4*k+j];
-
- memcpy( &q, pM, sizeof(D3DMATRIX) );
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_MatrixInvert()
- // Desc: Does the matrix operation: [Q] = inv[A]. Note: this function only
- // works for matrices with [0 0 0 1] for the 4th column.
- //-----------------------------------------------------------------------------
- HRESULT D3DMath_MatrixInvert( D3DMATRIX& q, D3DMATRIX& a )
- {
- if( fabs(a._m._44 - 1.0f) > .001f)
- return E_INVALIDARG;
- if( fabs(a._m._14) > .001f || fabs(a._m._24) > .001f || fabs(a._m._34) > .001f )
- return E_INVALIDARG;
-
- FLOAT fDetInv = 1.0f / ( a._m._11 * ( a._m._22 * a._m._33 - a._m._23 * a._m._32 ) -
- a._m._12 * ( a._m._21 * a._m._33 - a._m._23 * a._m._31 ) +
- a._m._13 * ( a._m._21 * a._m._32 - a._m._22 * a._m._31 ) );
-
- q._m._11 = fDetInv * ( a._m._22 * a._m._33 - a._m._23 * a._m._32 );
- q._m._12 = -fDetInv * ( a._m._12 * a._m._33 - a._m._13 * a._m._32 );
- q._m._13 = fDetInv * ( a._m._12 * a._m._23 - a._m._13 * a._m._22 );
- q._m._14 = 0.0f;
-
- q._m._21 = -fDetInv * ( a._m._21 * a._m._33 - a._m._23 * a._m._31 );
- q._m._22 = fDetInv * ( a._m._11 * a._m._33 - a._m._13 * a._m._31 );
- q._m._23 = -fDetInv * ( a._m._11 * a._m._23 - a._m._13 * a._m._21 );
- q._m._24 = 0.0f;
-
- q._m._31 = fDetInv * ( a._m._21 * a._m._32 - a._m._22 * a._m._31 );
- q._m._32 = -fDetInv * ( a._m._11 * a._m._32 - a._m._12 * a._m._31 );
- q._m._33 = fDetInv * ( a._m._11 * a._m._22 - a._m._12 * a._m._21 );
- q._m._34 = 0.0f;
-
- q._m._41 = -( a._m._41 * q._m._11 + a._m._42 * q._m._21 + a._m._43 * q._m._31 );
- q._m._42 = -( a._m._41 * q._m._12 + a._m._42 * q._m._22 + a._m._43 * q._m._32 );
- q._m._43 = -( a._m._41 * q._m._13 + a._m._42 * q._m._23 + a._m._43 * q._m._33 );
- q._m._44 = 1.0f;
-
- return S_OK;
- }
-
- //-----------------------------------------------------------------------------
- //-----------------------------------------------------------------------------
- HRESULT D3DMath_MatrixTranspose( D3DMATRIX& q, D3DMATRIX& a )
- {
- q._m._11 = a._m._11;
- q._m._12 = a._m._21;
- q._m._13 = a._m._31;
- q._m._14 = a._m._41;
-
- q._m._21 = a._m._12;
- q._m._22 = a._m._22;
- q._m._23 = a._m._32;
- q._m._24 = a._m._42;
-
- q._m._31 = a._m._13;
- q._m._32 = a._m._23;
- q._m._33 = a._m._33;
- q._m._34 = a._m._43;
-
- q._m._41 = a._m._14;
- q._m._42 = a._m._24;
- q._m._43 = a._m._34;
- q._m._44 = a._m._44;
-
- return S_OK;
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_VectorMatrixMultiply()
- // Desc: Multiplies a vector by a matrix
- //-----------------------------------------------------------------------------
- HRESULT D3DMath_VectorMatrixMultiply( D3DVECTOR& vDest, D3DVECTOR& vSrc,
- D3DMATRIX& mat)
- {
- FLOAT x = vSrc.x*mat._m._11 + vSrc.y*mat._m._21 + vSrc.z* mat._m._31 + mat._m._41;
- FLOAT y = vSrc.x*mat._m._12 + vSrc.y*mat._m._22 + vSrc.z* mat._m._32 + mat._m._42;
- FLOAT z = vSrc.x*mat._m._13 + vSrc.y*mat._m._23 + vSrc.z* mat._m._33 + mat._m._43;
- FLOAT w = vSrc.x*mat._m._14 + vSrc.y*mat._m._24 + vSrc.z* mat._m._34 + mat._m._44;
-
- if( fabs( w ) < g_EPSILON )
- return E_INVALIDARG;
-
- vDest.x = x/w;
- vDest.y = y/w;
- vDest.z = z/w;
-
- return S_OK;
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_VertexMatrixMultiply()
- // Desc: Multiplies a vertex by a matrix
- //-----------------------------------------------------------------------------
- HRESULT D3DMath_VertexMatrixMultiply( D3DVERTEX& vDest, D3DVERTEX& vSrc,
- D3DMATRIX& mat )
- {
- HRESULT hr;
- D3DVECTOR* pSrcVec = (D3DVECTOR*)&vSrc.x;
- D3DVECTOR* pDestVec = (D3DVECTOR*)&vDest.x;
-
- if( SUCCEEDED( hr = D3DMath_VectorMatrixMultiply( *pDestVec, *pSrcVec,
- mat ) ) )
- {
- pSrcVec = (D3DVECTOR*)&vSrc.nx;
- pDestVec = (D3DVECTOR*)&vDest.nx;
- hr = D3DMath_VectorMatrixMultiply( *pDestVec, *pSrcVec, mat );
- }
- return hr;
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_QuaternionFromRotation()
- // Desc: Converts a normalized axis and angle to a unit quaternion.
- //-----------------------------------------------------------------------------
- VOID D3DMath_QuaternionFromRotation( FLOAT& x, FLOAT& y, FLOAT& z, FLOAT& w,
- D3DVECTOR& v, FLOAT fTheta )
- {
- x = sinf( fTheta/2.0f ) * v.x;
- y = sinf( fTheta/2.0f ) * v.y;
- z = sinf( fTheta/2.0f ) * v.z;
- w = cosf( fTheta/2.0f );
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_RotationFromQuaternion()
- // Desc: Converts a normalized axis and angle to a unit quaternion.
- //-----------------------------------------------------------------------------
- VOID D3DMath_RotationFromQuaternion( D3DVECTOR& v, FLOAT& fTheta,
- FLOAT x, FLOAT y, FLOAT z, FLOAT w )
-
- {
- fTheta = acosf(w) * 2.0f;
- v.x = x / sinf( fTheta/2.0f );
- v.y = y / sinf( fTheta/2.0f );
- v.z = z / sinf( fTheta/2.0f );
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_QuaternionFromAngles()
- // Desc: Converts euler angles to a unit quaternion.
- //-----------------------------------------------------------------------------
- VOID D3DMath_QuaternionFromAngles( FLOAT& x, FLOAT& y, FLOAT& z, FLOAT& w,
- FLOAT fYaw, FLOAT fPitch, FLOAT fRoll )
-
- {
- FLOAT fSinYaw = sinf( fYaw/2.0f );
- FLOAT fSinPitch = sinf( fPitch/2.0f );
- FLOAT fSinRoll = sinf( fRoll/2.0f );
- FLOAT fCosYaw = cosf( fYaw/2.0f );
- FLOAT fCosPitch = cosf( fPitch/2.0f );
- FLOAT fCosRoll = cosf( fRoll/2.0f );
-
- x = fSinRoll * fCosPitch * fCosYaw - fCosRoll * fSinPitch * fSinYaw;
- y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
- z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
- w = fCosRoll * fCosPitch * fCosYaw + fSinRoll * fSinPitch * fSinYaw;
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_MatrixFromQuaternion()
- // Desc: Converts a unit quaternion into a rotation matrix.
- //-----------------------------------------------------------------------------
- VOID D3DMath_MatrixFromQuaternion( D3DMATRIX& mat, FLOAT x, FLOAT y, FLOAT z,
- FLOAT w )
- {
- FLOAT xx = x*x; FLOAT yy = y*y; FLOAT zz = z*z;
- FLOAT xy = x*y; FLOAT xz = x*z; FLOAT yz = y*z;
- FLOAT wx = w*x; FLOAT wy = w*y; FLOAT wz = w*z;
-
- mat._m._11 = 1 - 2 * ( yy + zz );
- mat._m._12 = 2 * ( xy - wz );
- mat._m._13 = 2 * ( xz + wy );
-
- mat._m._21 = 2 * ( xy + wz );
- mat._m._22 = 1 - 2 * ( xx + zz );
- mat._m._23 = 2 * ( yz - wx );
-
- mat._m._31 = 2 * ( xz - wy );
- mat._m._32 = 2 * ( yz + wx );
- mat._m._33 = 1 - 2 * ( xx + yy );
-
- mat._m._14 = mat._m._24 = mat._m._34 = 0.0f;
- mat._m._41 = mat._m._42 = mat._m._43 = 0.0f;
- mat._m._44 = 1.0f;
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_QuaternionFromMatrix()
- // Desc: Converts a rotation matrix into a unit quaternion.
- //-----------------------------------------------------------------------------
- VOID D3DMath_QuaternionFromMatrix( FLOAT& x, FLOAT& y, FLOAT& z, FLOAT& w,
- D3DMATRIX& mat )
- {
- if( mat._m._11 + mat._m._22 + mat._m._33 > 0.0f )
- {
- FLOAT s = sqrtf( mat._m._11 + mat._m._22 + mat._m._33 + mat._m._44 );
-
- x = (mat._m._23-mat._m._32) / (2*s);
- y = (mat._m._31-mat._m._13) / (2*s);
- z = (mat._m._12-mat._m._21) / (2*s);
- w = 0.5f * s;
- }
- else
- {
-
-
- }
- FLOAT xx = x*x; FLOAT yy = y*y; FLOAT zz = z*z;
- FLOAT xy = x*y; FLOAT xz = x*z; FLOAT yz = y*z;
- FLOAT wx = w*x; FLOAT wy = w*y; FLOAT wz = w*z;
-
- mat._m._11 = 1 - 2 * ( yy + zz );
- mat._m._12 = 2 * ( xy - wz );
- mat._m._13 = 2 * ( xz + wy );
-
- mat._m._21 = 2 * ( xy + wz );
- mat._m._22 = 1 - 2 * ( xx + zz );
- mat._m._23 = 2 * ( yz - wx );
-
- mat._m._31 = 2 * ( xz - wy );
- mat._m._32 = 2 * ( yz + wx );
- mat._m._33 = 1 - 2 * ( xx + yy );
-
- mat._m._14 = mat._m._24 = mat._m._34 = 0.0f;
- mat._m._41 = mat._m._42 = mat._m._43 = 0.0f;
- mat._m._44 = 1.0f;
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_QuaternionMultiply()
- // Desc: Mulitples two quaternions together as in {Q} = {A} * {B}.
- //-----------------------------------------------------------------------------
- VOID D3DMath_QuaternionMultiply( FLOAT& Qx, FLOAT& Qy, FLOAT& Qz, FLOAT& Qw,
- FLOAT Ax, FLOAT Ay, FLOAT Az, FLOAT Aw,
- FLOAT Bx, FLOAT By, FLOAT Bz, FLOAT Bw )
- {
- FLOAT Dx = Ax*Bw + Ay*Bz - Az*By + Aw*Bx;
- FLOAT Dy = -Ax*Bz + Ay*Bw + Az*Bx + Aw*By;
- FLOAT Dz = Ax*By - Ay*Bx + Az*Bw + Aw*Bz;
- FLOAT Dw = -Ax*Bx - Ay*By - Az*Bz + Aw*Bw;
-
- Qx = Dx; Qy = Dy; Qz = Dz; Qw = Dw;
- }
-
-
-
-
- //-----------------------------------------------------------------------------
- // Name: D3DMath_SlerpQuaternions()
- // Desc: Compute a quaternion which is the spherical linear interpolation
- // between two other quaternions by dvFraction.
- //-----------------------------------------------------------------------------
- VOID D3DMath_QuaternionSlerp( FLOAT& Qx, FLOAT& Qy, FLOAT& Qz, FLOAT& Qw,
- FLOAT Ax, FLOAT Ay, FLOAT Az, FLOAT Aw,
- FLOAT Bx, FLOAT By, FLOAT Bz, FLOAT Bw,
- FLOAT fAlpha )
- {
- // Compute dot product (equal to cosine of the angle between quaternions)
- FLOAT fCosTheta = Ax*Bx + Ay*By + Az*Bz + Aw*Bw;
-
- // Check angle to see if quaternions are in opposite hemispheres
- if( fCosTheta < 0.0f )
- {
- // If so, flip one of the quaterions
- fCosTheta = -fCosTheta;
- Bx = -Bx; By = -By; Bz = -Bz; Bw = -Bw;
- }
-
- // Set factors to do linear interpolation, as a special case where the
- // quaternions are close together.
- FLOAT fBeta = 1.0f - fAlpha;
-
- // If the quaternions aren't close, proceed with spherical interpolation
- if( 1.0f - fCosTheta > 0.001f )
- {
- FLOAT fTheta = acosf( fCosTheta );
-
- fBeta = sinf( fTheta*fBeta ) / sinf( fTheta);
- fAlpha = sinf( fTheta*fAlpha ) / sinf( fTheta);
- }
-
- // Do the interpolation
- Qx = fBeta*Ax + fAlpha*Bx;
- Qy = fBeta*Ay + fAlpha*By;
- Qz = fBeta*Az + fAlpha*Bz;
- Qw = fBeta*Aw + fAlpha*Bw;
- }
-
-
-
-
-